$1060
3 slots in washing machine,Explore um Mundo de Presentes Virtuais Sem Fim com a Hostess Bonita, Onde Cada Clique Pode Trazer Novas Recompensas e Momentos Memoráveis..“Sempre quis contar a história de como Lyra acabou morando na Faculdade Jordan. Este livro e o próximo cobrem dois momentos da vida dela: partindo bem do início e retornando vinte anos depois. Quanto ao terceiro livro, ainda é segredo.” – Phillip Pullman,Um plano é um objeto bidimensional. Ele tem comprimento e largura mas não espessura — algo como uma folha de papel (mas mesmo o papel tem alguma espessura). Pensar num plano em termo de vetores é um pouco mais complicado. Se imaginarmos pegar um vetor e movê-lo de modo que sua cauda tocasse a cabeça do antecedente e formasse um vetor com sua cauda na origem e a cabeça na cabeça do segundo vetor reposicionado, teremos um modo razoável de falar sobre soma de vetores. Se tivermos dois vetores que não sejam paralelos, poderemos falar de todos os pontos que podemos atingir esticando um ou nenhum dos vetores e, somando estes vetores em conjunto, seus pontos formarão um plano..
3 slots in washing machine,Explore um Mundo de Presentes Virtuais Sem Fim com a Hostess Bonita, Onde Cada Clique Pode Trazer Novas Recompensas e Momentos Memoráveis..“Sempre quis contar a história de como Lyra acabou morando na Faculdade Jordan. Este livro e o próximo cobrem dois momentos da vida dela: partindo bem do início e retornando vinte anos depois. Quanto ao terceiro livro, ainda é segredo.” – Phillip Pullman,Um plano é um objeto bidimensional. Ele tem comprimento e largura mas não espessura — algo como uma folha de papel (mas mesmo o papel tem alguma espessura). Pensar num plano em termo de vetores é um pouco mais complicado. Se imaginarmos pegar um vetor e movê-lo de modo que sua cauda tocasse a cabeça do antecedente e formasse um vetor com sua cauda na origem e a cabeça na cabeça do segundo vetor reposicionado, teremos um modo razoável de falar sobre soma de vetores. Se tivermos dois vetores que não sejam paralelos, poderemos falar de todos os pontos que podemos atingir esticando um ou nenhum dos vetores e, somando estes vetores em conjunto, seus pontos formarão um plano..